The Crystal Structure of *cis*-1,2-Cyclobutanedicarboxylic Acid*

By Dick van der Helm,† I-Nan Hsu‡ and J. M. Sims

Chemistry Department, University of Oklahoma, Norman, Oklahoma 73069, U.S.A.

(Received 21 January 1972)

The crystal structure of *cis*-1,2-cyclobutanedicarboxylic acid, $C_6H_8O_4$, has been determined and refined by the three-dimensional least-squares techniques. The crystals are monoclinic, space group $P2_1/c$, with a = 10.710 (3), b = 8.559 (2), c = 7.343 (2) Å and $\beta = 95.03^{\circ}$ (1). The final *R* value for 1256 reflections is 0.056. The cyclobutane ring is puckered with a dihedral angle of 156°. The longest and shortest bonds in the cyclobutane ring are 1.556 (4) and 1.526 (3) Å. The steric hindrance of the two carboxylic acid groups is decreased by deformation of bond angles and conformational angles. A librational temperature motion of the carboxylic acid groups around the C–C bonds of these groups is observed.

Introduction

The cyclobutane ring exists both in the planar and puckered conformation. In the solid state planar rings have been found in tetraphenylcyclobutane (Dunitz, 1949; Margulis, 1965), octahydroxycyclobutane (Bock, 1968), trans-1,3-cyclobutanedicarboxylic acid (Margulis & Fisher, 1967; Seigler, 1967), cis,trans,cis-1,2,3,4tetracyanocyclobutane (Greenberg & Post, 1968) and cis,trans,cis-1,2,3,4-cyclobutanetetracarboxylic acid tetramethyl ester (Margulis, 1971). It is interesting to note that all of these molecules have a center of symmetry which is retained as a crystallographic element of symmetry. On the other hand, the structures of perchlorocyclobutane (Owen & Hoard, 1951; Margulis, 1965), cis- and trans-1,2-dibromo-1,2-dimethoxycarbonylcyclobutane (Karle, Karle & Britts, 1966), cis-1,3-cyclobutanedicarboxylic acid (Adman & Margulis, 1969), trans-1,2-cyclobutanedicarboxylic acid (Benedetti, Corradini & Pedone, 1970) and cyclobutane-1,1dicarboxylic acid (Soltzberg & Margulis, 1969) provide examples of the puckered form. A surprising case has been reported by Adman & Margulis (1968) for the disodium salt of trans-1,3-cyclobutanedicarboxylic acid which crystallizes with two neutral acid molecules. The neutral acid previously found to have a planar conformation is found to be puckered, while the ring of the dianion is planar.

To gain more information about the cyclobutane ring, the diacid derivatives seem exceptionally well suited, because the thermal motion of the molecules should be low owing to the expected intermolecular hydrogen bonding. The accuracy of the structure determination should therefore be quite good. The present communication describes the structure determination of *cis*-1,2-cyclobutanedicarboxylic acid.

Experimental

Single crystals of *cis*-1,2-cyclobutanedicarboxylic acid, m.p. 139-140°, were kindly provided by Dr J. J. Bloomfield. A prismatic crystal, $0.17 \times 0.35 \times 0.27$ mm, was used for this investigation. All measurements were made at room temperature (22°C). The crystal had a mosaic spread of about 0.5°. The crystal data are given in Table 1. The cell dimensions were calculated by a least-squares procedure from the 2θ values of 48 reflections. The crystal density was determined by flotation in a mixture of CH_2Cl_2 and CCl_4 . The integrated intensities were taken on a General Electric XRD-5 diffraction unit using the θ -2 θ scan technique and nickel-filtered Cu $K\alpha$ radiation. The diffraction unit was equipped with a single-crystal orienter, scintillation counter and pulse-height analyzer. In total, 1256 reflections, comprising all reflections with $2\theta \le 140^\circ$, were measured, 81 of which did not show a peak on the

Table 1. Crystal data for cis-1,2-cyclobutanedicarboxylic acid

Throughout, estimated standard deviations for the last digit are given in parentheses.

Formula	$C_6H_8O_4$
F.W.	144.13
Systematic absences	0k0, k=2n+1
	h0l, l = 2n + 1
Space group	$P2_1/c$
Cell dimensions	a = 10.710 (3) Å
	b = 8.559(2)
	c = 7.343 (2)
	$\beta = 95.03^{\circ}$ (1)
Cell volume	$V = 670.5 \text{ Å}^3$
Density, calculated	$\rho_c = 1.428 \text{ g.cm}^{-3}$
Density, observed	$\varrho_o = 1.423$
Number of molecules per unit cell	Z = 4
Absorption coefficient	$\mu = 10.59 \text{ cm}^{-1}$
Wavelength	$\lambda = 1.5418 \text{ A}^{\circ}$

^{*} Presented at the American Crystallographic Association Meeting, Minneapolis, 1967.

[†] Supported by N.I.H. Development Award 5-K4-GM-42572.

[‡] This work was presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the University of Oklahoma.

recorder while scanning through their diffraction position. These 81 reflections were tagged as unobserved, and assigned an intensity of 10 counts, which was one half the value of the lowest observable intensity. The intensity data were corrected for Lorentz and polarization factors and for absorption. For the absorption correction the program of Coppens, Leiserowitz & Rabinovich (1965) was used with 216 sampling points. The program uses the numerical integration method of Gauss.

Structure determination

The structure was solved by a symbolic addition process. The reflections 553, 630 and 281 were assigned positive signs to fix the origin. A total of 86 signed reflections with E values above 1.5 were used to calculate an E map. The oxygen and carbon peaks were identified from the map with the aid of a model. These atomic positions were refined, initially with isotropic temperature factors and in the later cycles with anisotropic ones, using block-diagonal least-squares computations until $R = \sum ||kF_o| - |F_c|| / \sum |kF_o||$ was reduced to 0.082. The function minimized in the leastsquares calculations was $\sum w(|kF_o| - |F_c|)^2$, with $\sqrt{w} =$ $|kF_{e}|/P$ if $|kF_{e}| \leq P$, and $\sqrt{w} = P/|kF_{e}|$ if $|kF_{e}| > P$, using a value of 5 electrons for P, with the result that maximum weight was given to the most reliable data. A difference-Fourier synthesis using all the data revealed all the hydrogen atoms of the cyclobutane ring and two sets of disordered hydrogen atoms for the carboxyl groups. The peak heights of the latter hydrogen atoms were about half the height of those of the other hydrogen atoms (Table 2). A difference-Fourier synthesis of lower resolutions using only the data with $2\theta \le 60^\circ$ showed only two hydrogen positions located equidistant from the oxygen atoms forming hydrogen bonds. A third difference-Fourier synthesis calculated after a few more cycles of least-squares refinement, which included the hydrogen atoms of the cyclobutane ring, once again, using all the data, revealed the fact that the hydrogen atoms of the carboxyl groups were disordered. In the final cycles of least-squares refinement these four hydrogen atoms were included with half-occupancy, and the refinement was terminated when all parameter shifts were less than $\frac{1}{6}$ the corresponding standard deviations. A final difference-Fourier synthesis showed no unusual features. The largest spurious peak was $-0.24 \text{ e.}\text{Å}^{-3}$, and located between two oxygens of two different carboxyl groups in the same molecule.

Table 2. Positions und peak heights of the disorderedhydrogen atoms located from the first difference-Fouriersynthesis

	x	у	z	Peak height
H (1)	-0.05	0.61	0.40	0·30 e.Å-3
H(2)	0.07	0.39	0.52	0.25
H(9)	0.40	0.60	0 ∙47	0.19
H(10)	0.52	0.37	0.45	0.22

The final R value for all reflections was 0.056. The atomic scattering factors for C and O were taken directly from *International Tables for X-ray Crystallog-raphy* (1962). The scattering factors for H were those of Stewart, Davidson & Simpson (1965). The observed and calculated structure factors are given in Table 3. The positional and thermal parameters are presented in Tables 4 and 5.

Description and discussion of the structure

A projection of the structure down the *b* axis is shown in Fig. 1. Both acid groups form strong hydrogen bonds around two centers of symmetry, and the molecules form zigzag chains running parallel to the *a* axis. The carboxylic acid groups related to each other by a center of symmetry and forming the hydrogen bonds are not coplanar. The distances between the planes are 0.237 Å for O(1) O(2) C(3) C(4) and O(1') O(2') C(3') C(4'), and 0.295 Å for O(10) O(9) C(8) C(7) and O(10') O(9') C(8') C(7'). The shortest intermolecular distance is between O(2) and O(1) $(-x, -\frac{1}{2}+y, \frac{1}{2}-z)$ of 3.34 Å; all other intermolecular distances are larger than 3.4 Å. The equations of the planes are given in Table 6.

The cyclobutane ring of the present structure is puckered. The dihedral angle between the plane through C(4) C(5) C(6) and the plane through C(4) C(6) C(7) is 156°. This value is consistent with values reported for a puckered ring in other compounds containing a cyclobutane ring, which range from 145° in cyclobutane (Meiboom & Snyder, 1967) to 161° in perchlorocyclobutane (Margulis, 1965). The conformational angles of the bonds in the cyclobutane ring are given in Table 7. The average value is 17°.

The cis conformation of the two carboxylic acid groups bonded to adjacent carbon atoms results in considerable crowding of these two functional groups. This steric hindrance is relieved in the molecule in several ways: (1) By an additional twist of C(3) with respect to C(8) compared to C(5) with respect to C(6)of 16.5° [the conformational angles are C(3) C(4) C(7) $C(8): -33\cdot3^{\circ}$ and $C(5) C(4) C(7) C(6): -16\cdot8^{\circ}]$. (2) By increasing the sum of the three C-C-C bond angles at C(4) to 332.8° and decreasing those at C(7) to 312.5° , which are respectively larger and smaller than those found in six other structures of cyclobutanedicarboxvlic acids, in which these sums range from 314.4° to $325 \cdot 8^{\circ}$ for eight observations. (3) By rotating the carboxylic acid groups in the same directions around the C(3)-C(4) and C(7)-C(8) bonds, away from the preferred orientation (Dunitz & Strickler, 1968), in which the C=O bond (vide infra) of the acid group is syn planar with the C(4)-C(7) bond. It should be noted that all these adaptions of the molecule are angular deformations. The steric hindrance between the acid groups does not seem to influence the bond distances in the molecule. The C-H bond distances average 0.99 Å, with the extremes between 0.92 (3) Å for

Table 3. Structure factors

The values of $|10kF_o|$ and F_c are given. Unobserved reflections are indicated by an asterisk.

	L FO FC	L FO FC	L FO FC	L FO FC	L F0 FC	L FO FC	L FO FC	L FO FC	L FO FC	L FO FC	L FO FC	L FO FC
	2 8 12 4 155-146 6 49 48	-3 420-440 4 29 14	1 4 8	-7 17 14 H= 2 K= 7	5 44 -49 -5 8 -10	6 23 11 -6 21 -25	-2 89 9C 2 2C4-2C1	2 19 -21 -2 10 13	C 17 -17 1 30 30	H# 7 K= 8 0 2 0* 1 15 -20	-6 8 2 H= 9 K= 1 0 25 -21	4 27 29 -4 16 17 -5 40 37
	8 11 13 H= 0 K= 1	5 37 - 36 -5 142-146	-2 11 -4 H= 2 K= 0	1 115 112	-6 23 -20 7 54 54	-7 45 45 E E 6	4 82 80	H= 6 K= 0 0 277 261	2 28 -26 -2 52 55	-1 8 -5 2 4 •	1 94 91 -1 34 -30	H= 10 K= 4 C 24 -21
	1 2 -11 2 43 42 3 418-447	€ 86 87 -6 99 -98 7 3 0♥	0 23 32 2 646-686 -2 268-28C	2 34 32 -2 42 -44 3 5 6	-7 2 3* -8 6 8 H= 3 K= 5	-8 5 0 H= 4 K= 3 C 15 -15	5 21 22 -5 25 21 6 32 -29	2 47 46 -2 21 19 4 128-133	-3 16 -15 -4 2 -2*	-2 7 -4 -3 7 7 H= 8 K= 0	-2 17 16 -2 77 -77 3 17 -20	-1 66 -66 2 26 -25
$ \begin{array}{c} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	4 51 52 5 82 79 6 36 35	-7 BC 81 8 15 -14	4 78 76 -4 21 -23	-3 2 -9* 4 19 -15	0 43 40	1 25 27	-6 24 -24 7 40 45	-4 90 91 6 37 -32 -6 69 71	H= 6 K= 9 C 16 -17	0 126 123 2 243-244 -2 27 30	-3 94 -92 4 1C 8 -4 45 -47	-2 37 -35 3 1C 1C -1 23 -22
$ \begin{array}{c} \mathbf{n} \\ \mathbf$	7 142-139 R 12 10	H= 1 K= 3 C 115-117	-6 47 -47 8 78 -81	5 11 -9 -5 9 14	2 103 105 -2 6 5	-2 16 -7 3 61 6C	-8 32 -33 H= 5 K= 2	-8 59 54 H= 6 K= 1	-1 9 13 -2 2 -2*	4 26 21 -4 37 -37	5 23 -23 -5 47 -46	-4 18 21 -5 46 47
$\begin{array}{c} 2 & 2 & 2 & 2 & 2 & -2 & -2 & -2 & -2 $	0 9411028 1 213 237	-1 13 -3 2 150 153	H= 2 K= 1 C 30 -30	-6 42 -42 H= 2 K= 8	-3 40 38 4 1C8-107	4 41 42 -4 6C -6C	1 304-313	1 92 -86	0 50 49 2 129-126	-6 1C8-102 H= 8 K= 1	H= 9 K= 2 C 16 -14	C 1C 11
$ \begin{array}{c} 4 & 4-81 \\ 0 &$	2 52 -54 3 215 215 4 34 27	-2 57 92 3 130-126 -3 44 44	1 513 523 -1 499 533 2 31 27	C 7 -6 1 147 138 -1 15 12	-4 18 -15 5 1CC-102 -5 78 -84	5 71 -72 -5 59 -59 6 53 -94	2 124-123 -2 23 -12 3 29 -30	2 19 -20 -2 97 94 3 52 -52	-2 103 101 4 41 -43 -4 33 -36	0 35 32 1 193 196 -1 222 215	1 31 -32 -1 24 23 2 32 16	-1 52 52 2 21 15 -2 25 -25
$ \begin{bmatrix} 1 & 7 & 7 & -5 & 10^{7} & 112 & 4 & 12 & 10 & -2 & 12 & -14 & -2 & 12 & -14 & -2 & 12 & 51 & 52 & 51 & 52 & 51 & 52 & 53 & -52 & -13 & -32 & -13 & -18 & -14 & -4 & 45 & 62 & -14 & -$	5 49 -51 6 13 10 7 9 -8	4 266 255	-2 275-285 3 131-123 -3 272-257	2 46 43 -2 74 -7C 3 25 -2P	6 26 -23 -6 14 8 7 13 18	-6 85 82 7 34 35 -7 10 14	-3 217 222 4 56 -54 -6 45 -31	-3 57 52 4 56 -58 -4 96 -51	6 22 -16 -6 40 -39 H= 7 K= 1	2 34 -33 -2 71 -69 3 43 -44	-2 22 -6 3 75 77 -3 2 -60	3 20 -22 -3 2 C* -4 34 36
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	8 7 7 H= 0 K= 3	-5 107 112 6 19 -19	4 12 10 -4 54 51	-3 E -4 4 43 -42	-7 2 -1* H= 3 K= 6	-8 47 -44 H= 4 K= 4	5 26 35 -5 51 52	5 14 17 -5 34 -32	C 6 -2 1 91 -83	-3 78 -76 4 1C 11	4 73 74 -4 45 54 5 26 26	H= 10 K= 6 C 27 -26
$ \begin{array}{c} 4 & 41 & 19 & 8 & 28 & 25 & -6 & 117 & 1$	2 180-178 3 48 46	-6 80 81 7 18 -17 -7 38 40	-5 22 -29 6 18 -21	5 41 -39 -5 4 0	1 39 38	1 177-176	-6 26 26 7 47 -51	-6 15 13 7 4 -1*	2 11 3 -2 63 61	5 5 -2	-5 2C 26 -6 17 13	-1 17 -17 -2 2 4*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 81 79 5 65 64 6 90 88	8 26 25 -8 2 -3♦ H= 1 K= 4	-6 117 117 7 35 38 -7 10 -10	H= 2 K= 5 C 26 - 24 1 72 71	2 85 84 -2 164 165 3 22 -2C	2 248 248 -2 12 9 3 57 97	-7 35 -4C -8 11 5 H≖ 5 K⊒ 3	-7 52 -55 -8 2 -3* H= 6 K= 2	-3 106 99 4 105 105	-6 10 7 -7 2 -1*	C 15 15 1 44 -45	H= 11 K+ C 0 76 76
$ \begin{array}{c} 0 \ 2c^{-1} 304 \ 2 \ 16c^{-1} 4c^{-1} 5 \ 0 \ 121^{-1} 12c \ 3 \ 46 \ -46 \ 5 \ 37 \ -35 \ 2 \ 117^{-114} \ 2 \ 163 \ 166 \ 6 \ 30 \ -25 \ -1 \ 128 \ 133 \ 2 \ 15 \ 13 \ -4 \ 128 \ 128 \ 2 \ 42 \ -28 \ 2 \ 127 \ -3 \ 31 \ 31 \ -4 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ $	7 57 -54 8 7 -14 H= C K= 4	C E-1C 1 E1 64 -1 25 22	8 17 16 -8 5 -10 H= 2 K≠ 2	-1 36 -36 2 32 30 -2 8 -6	-3 34 35 4 36 33 -4 53 101	-3 81 -8C 4 5C -5C -4 2 7*	0 57 56 1 51 -46 -1 266 263	0 128 118 1 36 38 -1 167 149	-4 32 36 5 16 -15 -5 111 113	H# # K# 2 0 74 68 1 47 46	-1 24 26 2 12 -12 -2 85 -90	2 6 5 -2 151-15C 4 46 -55
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 257-304 1 31 -38	2 15C-145 -2 80 -84 3 31 38	0 121-120	3 11 12 -3 6 -1 4 17 -14	5 46 -48 -5 78 -79 6 2 1*	5 37 -35 -5 33 32 6 66 -66	2 117-114 -2 56 57 3 26 26	2 163 166 -2 30 -28 2 33 -33	6 30 -29 -6 2 -20 7 48 -44	-1 128 133 2 119-124 -2 20 -21	7 15 13 -2 55 -45 4 2 -2*	-4 32 32 H= 11 K= 1 C 23 -24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 25 23	-3 302-297 4 53 -97	2 34C-316 -2 61 1C	-4 17 18 H= 2 K= 10	-6 25 -2C -7 12 -8	-6 15 -19 7 37 -36	-3 105 103	-3 146-147 4 75 -77	-7 R 3 H= 7 K= 2	3 54 -57 -3 82 -83	-4 93 -92 5 16 10	1 110 112
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 35 35 6 12 -10 7 17 16	-4 56 -56 5 148-147 -5 61 -62	-3 134-137 4 31 26	1 19 19 -1 2 14	H= 3 K= 7 0 43 -45 1 20 -14	-8 10 -11 H= 4 K= 5	-4 25 20 5 58 54 -5 54 -57	5 65 -68 -5 15 -15	1 25 27 -1 1C -12	-4 2 -9 5 61 63	-6 37 35 H= 9 K= 4	-2 11 5 3 58 -57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B 2 24 H= 0 K= 5 1 109-113	6 84 83 -6 2C -15 7 19 22	-4 113 111 5 54 95 -5 118 121	2 31 31 -2 51 -48 H= 3 K= C	-1 5C -47 2 149 145 -2 2 2*	C 23 27 1 40 38 -1 16C 157	6 21 -21 -6 5 -7 7 20 23	6 28 - 37 -6 35 38 7 21 - 24	2 112-108 -2 138 138 3 114 11C	-5 31 -35 6 2 -4• -6 35 -27	C 27 -29 1 24 -26 -1 83 86	-3 26 -26 4 8 9 -4 37 35
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 202-198 3 43 38 4 52 -52	-7 56 55 8 31 33 -8 4 -4	6 18 17 -6 60 -67 7 27 25	C 122 124 2 354 356 -2 73C-823	3 51 47 -3 61 62 4 6 -4	2 58 55 -2 83 83 3 15 -22	-7 2 1* -8 47 -45 H= 5 K= 4	-7 24 -22 -8 38 37 H= 6 K= 3	-3 200-200 4 55 52 -4 81 -81	-7 2 -20 H= 8 K= 3 C 33 -32	2 98-104 -2 76 77 3 2 -3*	-5 27 25 H= 11 K= 2 C 37 3P
$ \begin{array}{c} \mu_{\text{B}} & 2 \left(x + 6 \right) - 1 + 2 \left(x + 1 \right) - 2 \left(x + 2 \right) - 5 - 2 \left(x + 2 \right) - 5 - 2 \left(x + 2 \right) - 2 - 2 \left(x + 2 \right) - 5 - 1 - 5 - 1 - 1 - 1 - 2 - 1 - 2 - 2 - 5 - 1 - 2 - 2 - 5 - 2 - 5 - 1 - 2 - 2 - 5 - 2 - 5 - 2 - 5 - 2 - 5 - 2 - 5 - 2 - 5 - 2 - 5 - 2 - 5 - 2 - 5 - 2 - 5 - 2 - 5 - 2 - 5 - 2 - 5 - 2 - 5 - 2 - 5 - 2 - 5 - 2 - 5 - 2 - 5 - 2 - 2$	5 36 25 6 62 65 7 30 37	H= 1 K= 5 C 39 - 36	-7 18 -16 8 37 -36	4 2C -17 -4 167 161	-4 27 24 5 33 -35	-3 82 78 4 57 96	C 39 -36 1 61 -61	0 271 276	5 14 -16 -5 6 -3	1 43 42 -1 6 7 2 24 -22	-3 33 -23 4 37 41 -4 11 8	1 41 -42 -1 18 -22 2 7 -8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H= C K= 6 0 132-125	-1 28 23 2 135 13C	H= 2 K= 3 0 242-254	-6 24 -20 8 21 -24	6 26 -27 -6 11 -14	5 38 -37 -5 113-112	2 39 37 -2 4 -1	2 27 -31 -2 170 168	-6 16 -15 -7 27 -31	-2 23 -81 3 26 4C	-5 1C -9 -6 33 32	-2 50 -85
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 39 36 2 11 -16 3 68 -69	-2 5 -14 3 72 -65 -3 136 137	-1 208-214 2 112-115	-P 24 23 H= 3 K= 1 0 193-195	0 71 -75 1 15 -16	-6 60 58 7 35 4C	-3 30 35 4 66 -67	-3 2 -6* 4 26 -29	C 84 84 1 125-177	4 42 42 -4 1º 11	C 4C 42 3 34 -35	-4 17 18 -5 6 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5 6 5 13 12 6 13 16	4 2 -5* -4 18 -17 5 10 5	-2 248-256 3 61 66 -3 96 103	1 415 43C -1 421-43P 2 382-379	-1 7 13 2 10 8 -2 7 10	-7 11 12 H= 4 K= 6 C 2E 29	-4 165-173 5 37 38 -5 81 84	-4 117-117 5 62 -60 -5 11 -11	-1 43 43 2 31 ~21 -7 27 32	5 1e -16 -5 4C 47 6 2 1•	-1 26 30 2 E -E -2 6 1	C 2C -2C 1 5 -6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 30 31 H= C K= 7 1 25 -31	-5 44 45 6 29 -26 -6 14 14	4 13C 125 -4 6C 54 5 35 -38	-2 268 274 3 145-144 -3 164-166	374 -35557 466	1 128-126 -1 25 -3C 2 76 75	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 14 -13 -6 2 3* 7 5 -5	7 65 62 -7 31 -31 4 147 145	-6 7 -12 -7 2 30 H= 8 K= 4	3 2 2* -3 48 -44 4 18 -17	-1 41 15 2 14 -15 -2 16 36
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 15 13 3 24 -24 4 115-115	7 8 C -7 26 28 H= 1 K= 6	-5 53 45 6 23 -24 -6 133 130	4 4 -1 -4 35 -36 5 34 34	-4 2 1* 5 7 7 -5 67 -68	-2 34 33 3 7C 71 -1 53 -56	-7 22 -23 H= 5 K= 5 C 63 64	-7 2 -3* H= 6 K= 4 0 35 -43	-4 5 13 5 5 -1 -5 2 C*	0 42 -46 1 14 -2C -1 24 27	-4 33 -39 -5 15 17 H= 9 K= 6	3 32 - 34 - 3 45 4P - 4 28 2P
m ² 0 1 7 2 e c 1 <td>5 9 -8 6 10 12</td> <td>C 53 -56 1 118 114</td> <td>7 1C -8 -7 24 -23</td> <td>-5 8 6 6 10 -8</td> <td>H= 3 K= 9 C 51 -46</td> <td>4 4C -37 -4 53 -52</td> <td>1 28 21</td> <td>1 43 -42 -1 77 P3</td> <td>6 19 -22 -6 17 15</td> <td>2 28 -23</td> <td>C 2C 17 1 6 -6 -1 38 63</td> <td>H= 11 K= 4 C 8 1C 1 3C = 3C</td>	5 9 -8 6 10 12	C 53 -56 1 118 114	7 1C -8 -7 24 -23	-5 8 6 6 10 -8	H= 3 K= 9 C 51 -46	4 4C -37 -4 53 -52	1 28 21	1 43 -42 -1 77 P3	6 19 -22 -6 17 15	2 28 -23	C 2C 17 1 6 -6 -1 38 63	H= 11 K= 4 C 8 1C 1 3C = 3C
2 26 26 2 3 20 25 C 135-143 E 6 4 -2 17 -15 -6 6 -2 -3 112 10 -7 10 -10 1 4 4 5 - 5 C 3 - 5 - 5 - 5 - 2 - 5 - 2 - 2 - 2 - 2 - 2	0 13 7 1 90 86	2 26 -21	-8 17 -15 H= 2 K= 4	7 9 5	-1 2 -2* 2 51 53	-5 55 -56 6 2 -4*	-2 68 -66 3 185 189	-2 68 67 3 53 58	H= 7 K= 4 C 34 -35	-3 21 2C 4 21 24	2 53 -57 -2 34 34	-1 17 16 2 1C -13
4 19 16 4 41 -45 -1 57 94 Hz 3 Kz 2 -3 21 22 Hz 4 Kz 7 -4 8 -10 -4 67 667 2 11 10 -3 11 12 -4 7 7 7 7	2 26 26 3 32 -35 4 19 16	20 25 -3 12 14 4 41 -45	C 135-143 1 3C3-295 -1 57 94	€ 6 4 -8 23 20 H= 3 K= 2	-2 17 -15 3 12 11 -3 21 22	-6 6 -2 -7 12 -5 H= 4 K= 7	-3 112 104 4 32 -32 -4 8 -10	-3 10 -10 4 24 26 -4 87 -87	-1 42 4C 2 11 1C	5 24 26 -5 11 -12	-3 2 -3*	-2 26 26
5 23 - 20 - 4 2 - 26 2 45 - 31 C 251 2 45 - 4 18 15 C 89 43 5 2 - 76 5 42 - 42 - 2 67 71 - 6 52 45 + 7 46 7 1 = 11 A 4 H= C K= 5 5 9C - 91 - 2 161 166 1 416 - 32 H* 3 K* 10 1 24 24 - 5 34 - 36 - 5 17 - 17 9 11 6 H* 8 K* 5 C 17 - 13 C 2 3 1 22 - 78 - 5 21 - 26 3 17 21 - 1232 236 C 5 6 - 1 70 71 6 20 16 6 1C - 11 - 3 2C3 - 20 0 76 - 79 1 3 - 7 1 71 - 2	5 23 -20 H= C K= 5 1 22 -28	-4 2 -8* 5 9C -91 -5 21 -26	2 45 -31 -2 161 168 3 17 21	C 251 265 1 416-432 -1 232 236	-4 18 15 H= 3 K= 10 C 5 6	C 89 93 1 24 24 -1 70 71	-5 34 -36 6 20 16	-5 17 -17 6 10 -11	-2 68 71 3 11 8 -3 203-202	-6 52 45 H= 8 K= 5 0 78 -79	C 17 -13 1 3 -7	C 2 2*
2 35 26 € 2 29 -3 4C 33 2 112 9C 1 5 -3 2 105 10C -6 16 14 -6 20 -11 4 91 9E 1 115-115 -1 2C 22 -1 5/5 3 2 99 -6 2 -79 4 60 -63 -2 217-155 -1 € € -2 2 29 -7 2 19 -7 12 -9 -4 8€ -85 -1 1€ -16 -7 24 22 -2 2€ 2′ 4 25 -39 7 8 € -4 129 125 3 48 45 H= 4 K≡ C 3 61 -62 H= 5 K≡ 6 H≡ 6 K≡ 5 5 -5 -5 2 7 7 H≡ 10 K≡ C H≡ 12 K≡	2 39 26 3 2 90 4 29 - 39	6 2 2* -6 2 -7* 7 8 8	-3 4C 33 4 6C -63 -4 129 125	2 112 9C -2 217-159 3 48 45	15-3 -166 H=4K=0	2 105 10C -2 2 2* 3 61 -62	-6 16 14 -7 2 1* H= 5 K= 6	-6 20 -11 -7 12 -9 H= 6 K= 5	4 91 98 -4 86 -85 5 5 -5	-1 16 -16 2 1 7	-1 2C 22 -2 24 22 H= 10 K= C	-1 57 58 -2 26 29 H= 12 K= C
H# 0 K# 1C -7 1C 5 5 4 92 -3 179 178 0 337-347 -3 14 10 C 10C-102 0 57 -60 -5 34 37 -2 7 -1C C 55 54 0 62 -6 0 18 17 H# 1 K# 7 -5 41 40 4 36 -36 2 124-11 4 5 8 1 24 21 1 61 -78 6 1C 8 3 64 7C 7 42 -35 2 1C 1 1 3 13 1 C 2C -16 6 21 22 -41 124 123 -2 171-154 -4 57 -58 -1 90 -93 -1 13 -15 -6 23 23 -3 2 -2 4 - 21 5 -24 -2 4 4 -4	H= 0 K= 1C 0 18 17	-7 1C 5 H= 1 K= 7 C 2C -16	5 54 92 -5 41 40 6 21 22	-3 179 178 4 36 -36 -4 124 123	0 337-347 2 124-111 -2 171-154	-3 14 10 4 5 8 -4 57 -58	C 100-102 1 24 21 -1 90 -93	0 57 -60 1 81 -78 -1 13 -15	-5 34 37 6 1C 8 -6 23 23	-2 7 -1C 3 64 7C -3 2 -2*	C 95 94 2 42 -39 -2 19 -24	0 62 -6C 2 1C 1? -2 44 -41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 8 10 H= 1 K= 0	1 40 -36	-6 30 -32 7 2 -3*	5 56 54 -5 1C 10	4 119 119 -4 19 20 6 122 124	5 E -5 -5 32 -34 -6 40 38	2 145 153 -2 21 -2C 3 49 49	2 49 -51 -2 1CC 1C4 3 110 110	-7 4 -2 H= 7 K= 5 0 52 51	4 33 35 -4 57 58 5 7 6	4 103 57 -4 2 -4* -6 12 6	-4 35 38 H= 12 K= 1 C 35 32
2 106 105 -2 90 90 8 11 10 -6 21 -18 -6 22 -28 H# 4 K# 8 -3 12 -11 -3 20 -20 1 55 -57 -5 2 3* F= 10 K* 1 1 15 -1 -2 220-233 3 28 -30 -8 6 5 7 25 25 8 8 2 0 24 22 4 44 -45 4 12 9 -1 8 -10 -6 26 -28 0 29 25 -1 52 -5 4 164 165 -3 26 24 24 54 56 -3 25 24 H# 2 K# 6 1 85 -87 2 25 -2 4 164 155 -57 -52 4 H# 2 K# 6 1 85 -87 2 25 -2 4 164 155 -57 -52 4 H# 2 K# 6 1 85 -87 2 25 -2 2 5 -2 5 -2 5 -2 5 -2 5 -2 5 -2	2 106 105	-2 9C 9C 3 28 -3C	8 11 1C -8 6 5	-6 21 -18 7 25 25 -7 6 3	-6 22 -28 8 8 2 -8 21 15	H= 4 K= 8 C 24 22	-3 12 -11 4 44 -45 -4 47 -50	-3 20 -20 4 12 9 -4 45 -47	1 55 -57 -1 8 -10 2 45 -47	-5 2 3* -6 26 -28 H= 8 K= 6	F= 10 K= 1 C 29 25 1 85 -87	1 15 -15 -1 52 -54 2 25 -25
-4 171 185 4 37 -36 0 155-162 8 32 -31 H 4 4 K 1 -1 39 -42 5 30 27 5 19 -21 -2 41 -40 C 65 -67 -1 28 31 -2 7 6 33 30 -4 8 5 1 43 44 -8 15 22 C 9 -4 2 15 19 -5 58 55 -5 48 -46 3 29 29 1 12 -15 2 53 -51 -3 22 2 6 33 -6	-4 171 185 6 33 30	4 37 -36	0 155-162	8 32 -31 -8 15 22	H= 4 K= 1 C 9 -4	-1 39 -42 2 15 19	5 3C 27 -5 58 55	5 19 -21 -5 48 -46 6 25 -25	-2 41 -4C 3 29 29	C 65 -67 1 12 -15	-1 28 31 2 53 -51 -7 76 -73	-2 7 7 -3 22 28
-6 156-165 5 11 8 -1 144-140 H 3 K 5 1 160-159 -2 19 16 5 5 -36 6 27 -27 5 5 26 -6 1 2 -11 - 2 20 -25 - 18 -12 K - 18 -5 2 -53 -53 -53 -63 H 12 K - 8 -2 10 -6 -7 -2 2 -20 -6 4 63 62 2 28 -25 3 6 -63 H 12 K - 8 -2 10 -6 7 7 -7 26 25 -4 2 28 -2 44 44 -2 45 -47 C 16 1	-6 186-183 8 52 -53 -8 2 1•	-5 2 -3* 6 7 7	-1 144-140 2 96 -93 -2 35 -35	C 81 -87 1 131 130	-1 211-216 2 91 -93	-2 19 -18 2 12 14 -3 2 -2*	-6 2 -2* H= 5 K= 7	-6 22 -20 -7 26 25	4 63 62 -4 2 2*	2 28 -25	2 63 -63	H= 12 K= 2 C 16 12
H= 1 K= 1 - 6 46-44 3 8 -3 -1 7 -10 -2 135-121 4 11 -11 0 25 -27 H= 6 K= 6 5 35 -35 3 42 -44 4 14 20 1 26 -2 0 100-101 H= 1 K= 8 -3 78 75 2 315-308 3 77 -72 -4 6 -6 1 5 -5 0 4C -45 -5 22 -21 -3 51 56 -4 12 -6 -1 26 2 1 614 653 0 69 67 4 95 91 -2 200 209 -3 128 129 -5 28 -27 -1 101-102 1 2 -28 -6 27 37 4 33 31 5 67 64 2 17 1	H= 1 K= 1 0 1C0-101 1 614 653	-6 46 -44 H= 1 K= 8 0 69 67	3 8 -3 -3 78 75 4 55 91	-1 7 -10 2 315-308 -2 20C 209	-2 135-131 3 77 -72 -3 128 129	4 11 -11 -4 ¢ -8 -5 28 -27	0 25 -27 1 5 -5 -1 101-102	H C K C -45 1 2 -20	-5 22 -21	-3 51 54 4 33 31	-4 19 20 -4 12 -e 5 67 64	-1 20 25 2 17 10
-1 623-665 1 11 10 -4 7 -6 3 244-239 4 30 -20 H = 4 K = 9 2 23 -24 -1 10 13 H = 7 K = 6 -4 36 -35 -5 2 -24 -2 2 2 11 17 -1 16 -16 5 67 -92 -3 136-148 -4 34 -32 C 30 29 -2 21 -15 2 44 -43 C 28 -31 -5 8 1C -6 1C 1C -2 15 -1 -2 168 209 2 22 -23 -5 31 34 4 105-10C 5 18 18 1 21 3 93 52 -2 145 141 1 2 3 H = 8 K = 7 H = 10 K = 2 H = 12 K =	-1 623-685 2 11 17 -2 158 209	1 11 10 -1 16 -16 2 22 -23	-4 7 -6 5 57 -92 -5 31 34	3 244-239 -3 139-148 4 105-100	4 30 -20 -4 34 -32 5 18 18	H= 4 K= 9 C 30 29 1 21 21	2 23 -24 -2 21 -15 3 93 52	-1 1C 13 2 44 -43 -2 145 141	C 28 - 31 1 2 3*	-4 36 - 35 -5 8 1C H= 8 K= 7	-6 10 10 H= 30 K= 2	-2 15 -17 H= 12 K= 3
3 261 262 -2 2 6* 6 2 -6* -4 72 -71 -5 54 54 -1 46 -42 -? 57 55 3 79 78 -1 6 11 C 9 -5 C 55 55 0 43 4 -3 110-109 3 5 4 -6 12 -13 5 44 -44 6 38 -39 2 27 27 4 12 -8 -3 18 16 2 65 66 1 62 -63 1 28 -3C 1 7 4 260 260 -3 68 63 7 11 -10 -5 117-121 -6 62 60 -2 5 -2 -4 20 -18 4 38 39 -2 28 -15 -1 2C 2 -1 36 -41 -1 3C -3	3 261 282 -3 110-109 4 260 260	-2 2 6* 3 5 4 -3 68 63	6 2 -6* -6 12 -13 7 11 -10	-4 72 -71 5 44 -44 -5 117-121	-5 54 54 6 38 -39 -6 62 60	-1 46 -42 2 27 27 -2 5 -2	-3 57 55 4 12 -8 -4 20 -18	3 79 78 -3 18 16 4 38 39	-1 6 11 2 65 66 -2 26 -15	C 9 -5 1 62 -63 -1 2C 2C	C 55 55 1 28 - 3C -1 36 - 41	0 43 42 1 7 6 -1 3C -30
-4 76 -81 4 5 -8 -7 2 68 6 22 -19 7 14 16 3 13 -14 5 29 -27 -4 78 -77 3 21 -22 2 2 -68 2 33 -32 -2 2 5 38 31 -4 7 -12 H= 2 K= 6 -6 38 32 -7 64 67 -3 2 -18 -5 15 -12 5 7 -4 -3 54 -59 -7 2 58 -2 52 -58 -3 2 -1 6 -5 15 -12 5 7 -4 -3 54 -59 -7 2 58 -2 52 -58 -3 2 -1 6 +12 K= 5 K= 8 -5 2 09 4 10 4 3 37 40 3 23 -21 H= 12 K= 6 -6 18 -2 2 -2 18 -12 K= 7 -10 -2	-4 76 -81 5 38 31	4 5 -0	-7 2 6* H= 2 K= 6	6 23 -19 -6 38 32 7 30 20	7 14 16 -7 64 67 8 15 14	3 13 -14 -3 2 -10 H= 5 K= 0	5 29 -27 -5 15 -12 H= 5 K= A	-4 78 -77 5 7 -4 -5 2 00	3 21 -22 -3 54 -59 4 10 4	2 2 -64 -7 2 59 3 37 40	2 33 - 32 -2 53 - 54 3 23 - 21	-2 2 C -3 2 -1 H= 12 K= 4
- 1 10 10 - 1 - 1 - 1 - 2 - 2 - 2 - 3 - 3	-5 14C 170 6 2 24 -6 41 43	-5 17 -20 H= 1 K= 5	1 75 76	-7 10 -8 6 24 23	-8 35 -26 H= 4 K= 2	C 56 -54 2 102-108	C 58 -61 1 2 1*	-6 9 -7 H= 6 K= 7	-4 29 -26 5 2 34	-3 25 24 -4 28 30	-3 59 -57 4 54 51 -4 8 4	C 62 66 -1 15 16 H= 17 K= 0
r 99 -97 U 10 -0 2 17 9 -6 30 27 U 19 -6 30 27 0 -1 32 - 25 - 5 - 0 10 -10 -2 21 30 - 0 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0	7 95 -97 -7 37 -38 8 2 3*	0 10 -6 1 41 40 -1 40 36	-2 35 31 3 27 -24	-8 30 29 H= 3 K= 4 C 75 79	1 9C 83 -1 327 332	4 55 -52	2 56 62	1 84 -81	H= 7 K= 7 0 21 -20	0 27 -20	-5 71 67	C 55 55
-8 9 7 2 2 5% -3 44 42 1 73 -68 2 171 169 6 23 -24 3 46 47 2 43 -45 1 25 22 -1 1C -1C H* 10 K* 3 H* 1 K* 2 -2 52 49 4 103-104 -1 107 111 -2 145-14C -6 57 60 -3 9 4 -2 9 10 -1 2 -5% -2 12 16 C 21 22 0 159 161 3 36 -34 -4 9 2 2 44 43 3 50 -46 -8 2 -8% 4 5 -7 3 22 23 2 16 -21 H* 9 K* 0 1 2 3%	-8 9 7 H= 1 K= 2 0 159 161	2 2 5 -2 52 49 3 36 -34	-3 44 42 4 103-104 -4 9 2	1 73 -68 -1 107 111 2 44 43	2 171 169 -2 145-14C 3 50 -46	6 23 -24 -6 57 60 -8 2 -8*	3 46 47 -3 9 4 4 5 -7	2 43 -45 -2 9 10 3 22 23	1 25 22 -1 2 -54 2 10 -21	-1 1C -1C -2 12 16 H= 9 K= 0	C 21 22 1 2 3*	
1 437-451 -3 53 -53 5 9 -7 -2 307 313 -3 137-134 H+ 5 K+ 1 -4 17 16 -3 9 -9 -2 17 -19 0 53 51 -1 55 59 -1 119 123 4 2 1+ -5 16 15 3 4C -43 4 40 44 0 37 -35 H+ 5 K+ 9 4 14 -11 3 7 5 2 157 159 2 43 -42 2 61 -56 -4 24 24 6 33 32 -3 49 46 -4 66 61 1 90 -79 0 2 0+ -4 2 -5+ -3 12 -12 -2 123-117 -2 54 -52	1 437-451 -1 119 123 2 61 -56	-3 53 -53 4 2 1+ -4 24 24	5 9 -7 -5 16 15 6 33 32	-2 307 313 3 4C -43 -3 49 46	-3 137-134 4 48 44 -4 66 67	H= 5 K= 1 0 37 -35 1 90 -79	-4 17 18 H= 5 K= 9 0 2 09	-3 9 -9 4 14 -11 -4 2 -5*	-2 17 -19 3 7 5 -3 12 -12	2 157 159 -2 123-117	-1 55 59 2 43 -42 -2 54 -52	

Table 4. Positional and isotropic thermal parameters

	x	у	Z	<i>B</i> (A ²)
O(1)	0.0132 (2)	0.5897 (2)	0.2923 (2)	
O(2)	0.1233 (1)	0.3956 (2)	0.4261 (2)	
C(3)	0.0977 (2)	0.4851 (3)	0.2940 (3)	
C(4)	0.1631 (2)	0.4700 (3)	0.1250 (3)	
C(5)	0.2009 (2)	0.6140 (3)	0.0204 (3)	
C(6)	0.3185 (2)	0.5249 (4)	-0·0237 (3)	
C(7)	0.2985 (2)	0.4063 (3)	0.1317 (3)	
C(8)	0.3809 (2)	0.4453 (3)	0.2999 (3)	
O(9)	0.3678 (2)	0.5696 (2)	0.3812 (3)	
O(10)	0.4667 (1)	0.3467 (2)	0.3467 (3)	
H(1)* -	- 0·013 (4)	0.600 (5)	0·390 (6)	4·1 (10)
H(2)*	0·076 (4)	0.395 (5)	0.500 (6)	3.7 (9)
H(4)	0.108 (2)	0.402 (3)	0.038 (3)	4.2 (5)
H(5)1	0.227 (2)	0.702 (3)	0.094 (3)	5.2 (5)
H(5)2	0.137 (2)	0.645 (3)	-0.082(3)	5.3 (5)
H(6)1	0.406 (3)	0.584 (4)	-0.004(5)	7.5 (7)
H(6)2	0.317 (3)	0.474 (4)	<i>−</i> 0·135 (5)	8.5 (8)
H(7)	0.303 (2)	0.296 (3)	0.103 (3)	3.5 (4)
H(9)*	0.422 (6)	0.584 (8)	0.431 (9)	8·0 (16)
H(10)*	0.521 (6)	0.398 (7)	0.452 (9)	7.7 (15)

* Occupancy factor = $\frac{1}{2}$.

C(6)-H(6)2 and 1.07 (3) Å for C(6)-H(6)1. The distances between the oxygen atoms and the disordered hydrogen atoms vary between 0.67 (7) Å and 1.03 (6) Å. The bond angles involving the hydrogen atoms have an average value of 112.4° .

The bond distances and bond angles involving the C and O atoms are shown in Fig. 2. From both the observations in the difference-Fourier syntheses and least-squares refinement, indicating 1:1 disorder of the hydrogen atom in the carboxylic acid groups,

Fig. 1. Projection of the structure down the b axis

we expected the C–O bond distances in each acid group to be equal in length. It is, however, obvious that both the C(3)–O(2) and C(8)–O(9) bonds are significantly shorter than the C(3)–O(1) and C(8)–O(10) distances. Some disorder for the hydrogen atoms, although not 1:1, is clearly indicated by the fact that the C(3)–O(1) and C(8)–O(10) distances are shorter than the C–O length, and that the C(3)–O(2) and C(8)–O(9) distances are longer than the C=O length in normal carboxylic acid groups. The bond angles around C(3) and C(8)

Table 5. Anisotropic thermal parameters ($\times 10^4$) in the form exp $\left[-(b_{11}h^2+b_{22}k^2+b_{33}l^2+b_{23}kl+b_{13}hl+b_{12}hk)\right]$

	b11	b22	b33	b23	b13	<i>b</i> ₁₂
O(1)	94 (2)	188 (3)	218 (4)	71 (5)	42 (4)	78 (3)
O(2)	90 (1)	185 (3)	229 (4)	119 (5)	61 (4)	60 (3)
C(3)	58 (2)	124 (3)	182 (4)	-2(6)	-16(4)	-11(4)
C(4)	66 (2)	144 (4)	177 (4)	-7 (6)	-9(4)	-5(4)
C(5)	97 (2)	173 (4)	221 (5)	55 (7)	36 (5)	5 (5)
C(6)	105 (2)	222 (5)	198 (5)	36 (8)	82 (5)	17 (6)
C(7)	77 (2)	138 (4)	198 (5)	- 42 (6)	13 (5)	13 (4)
C(8)	63 (2)	132 (3)	205 (4)	2 (6)	42 (4)	-1 (4)
O(9)	90 (2)	183 (3)	312 (4)	- 157 (6)	-67 (4)	41 (3)
O(10)	92 (2)	169 (3)	289 (4)	-26 (6)	-46 (4)	53 (4)

Table 6. Least-squares planes

The equations of the planes are expressed in the form Ax + By + Cz = D, where x, y and z are fractional coordinates and D is the distance from the origin in Å. The method of Schomaker, Waser, Marsh & Bergman (1959) was used to calculate the least-squares planes.

Plane	Atoms	A	В	С	D
1	O(1) O(2) C(3) C(4)	7.04	.9 5.593	2.311	4·070
2	O(10) O(9) C(8) C(7)	7.28	7 3.948	-4.604	3.168
3	C(4) C(5) C(6)	- 4.50	-3.055	- 5.831	- 2.899
4	C(4) C(6) C(7)	2.54	4 5.914	4.842	3.800
5	C(4) C(5) C(6) C(7)	3.58	3 4.613	5.439	3.548
	∆ (1)		⊿(2)		∆ (5)
O(1)	-0.004 Å	O(10)	0.005 Å	C(4)	-0·115 Å
O(2)	-0.004	O(9)	0.006	C(5)	0.116
C(3)	0.011	C(8)	-0.015	C(6)	-0.114
C(4)	0.003	C(7)	0.004	C(7)	0.113

Fig. 2. Bond distances and bond angles. Standard deviations for the bond angles are 0.2°

are in agreement with this conclusion. Disorder in hydrogen bonding was also observed in *cis*-1,3-cyclobutanedicarboxylic acid (Adman & Margulis, 1969). The average of the bond distances in the cyclobutane ring is normal (1.540 Ű), the shortest and longest bond [C(4)-C(5) and C(7)-C(6) respectively] differ, however, significantly by 8 estimated standard deviations. We are unable to explain this observation. Although long bonds are not unusual in cyclobutane rings, short bonds are less common. An even shorter bond (1.517 Å) was observed in *trans*-1,2-cyclobutanedicarboxylic acid (Benedetti, Corradini & Pedone, 1970).

A rationale of long bonds in cyclobutane rings was given by Dunitz & Schomaker (1952). The bond distances in the cyclobutane ring can be corrected for thermal motion. The riding model of Busing & Levy (1964) gives the following corrected distances while the rigid-body motion of Schomaker & Trueblood (1969) for atoms C(3), C(7), C(5), C(6), C(7) and C(8) yields the distances in parentheses: C(4)–C(5) 1.538 (1.532) Å: C(4)–C(7), 1.548 (1.550) Å: C(5)–C(6), 1.536 (1.536) Å: C(6)–C(7), 1.571 (1.562) Å. Both corrections eliminate the short bonds but the large difference between long and short bonds remains. The rigid-body motion seems appropriate for the six carbon atoms because the largest difference between calculated and observed values for any thermal parameter is 4.5σ . This value increases to 15σ when all ten atoms are used as the rigid body, indicating an independent motion of the carboxylic acid groups (see below).

The principal axes of the vibration ellipsoids, along with the direction cosines, are presented in Table 8. A stereoscopic view of the molecule is shown in Fig. 3. It is sometimes assumed that the ring atoms in a cyclobutane ring should show a large thermal motion perpendicular to the ring. This is not the case, and as a matter of fact they show little anisotropy in the present structure. The largest thermal motion for the ring atoms is observed for C(6). This atom, however, has no intermolecular contacts smaller than 3.9 Å, while each of the other three atoms has intermolecular contacts between 3.4 and 3.5 Å. All oxygen atoms, on the other hand, show anisotropy, but not the carbon atoms of the carboxylic acid groups. This indicates a librational motion around the C(3)-C(4) and C(8)-C(7)bonds. This is supported by the fact that the main axes of the thermal ellipsoids of the oxygen atoms are approximately parallel to the normals of the planes through the respective carboxylic acid groups. The angles are 14, 23, 21 and 18° for O(1), O(2), O(9) and O(10).

Table 7. Conformational angles

The *cis* conformation is 0°. The angles given in the Table are the right handed rotations to obtain the observed conformation from the *cis* conformation for the atoms.

Fig. 3. Steroscopic diagram of the molecule using the ORTEP program (Johnson, 1965).

Table 8. Vibration ellipsoids

Principle axes and direction cosines with respect to the real axes.

	<i>B</i> (Å ²)	l_1	l_2	l_3
O(1)	6.74	0.466	0.791	0.355
- (-)	4.35	-0.414	-0.202	0.921
	3.32	0.782	-0.578	0.164
O(2)	7.04	0.334	0.734	0.559
	3.84	0.647	0.277	-0.764
	3.43	0.685	-0.620	0.321
C(3)	4.15	-0.402	0.100	0·942
	3.67	-0.106	0.982	-0.145
	2.47	0.909	0.159	0.303
C(4)	4.23	0.026	0.973	-0.231
•	4.01	-0.452	0.216	0.901
	2.84	0.891	0.082	0.366
C(5)	5.61	0.099	0.778	0.609
	4.42	0.924	-0.303	0.151
	4.15	-0.369	-0.550	0.779
C(6)	6.68	0.237	0.937	0.236
	5.18	0.756	-0.345	0.489
	3.49	-0.611	-0.063	0.840
C (7)	4.76	-0.255	-0.642	0.743
	3.66	0.434	0.592	0.638
	3.39	0.864	-0.487	-0.203
C(8)	4.43	0.162	0.038	0.968
	3.88	-0.029	0.999	-0.031
	2.75	0.986	0.023	-0.249
O(9)	8.86	-0.383	-0.528	0.789
	4.03	-0.370	0.840	0.428
	3.20	0.846	0.129	0.441
O(10)	7.12	-0.498	-0.348	0.835
	5.06	0.251	0.819	0.492
	3.38	0.830	<i>−</i> 0·457	0.246

The authors extend their gratitude to Dr F. R. Ahmed who supplied us with copies of his IBM 360 programs, to Dr P. Coppens for a copy of his absorption program, to Dr J. J. Bloomfield for supplying us with a sample of the compound, and to the Computing Center of the University of Oklahoma for putting computer time at their disposal.

References

- ADMAN, E. & MARGULIS, T. N. (1968). J. Amer. Chem. Soc. 90, 4517.
- ADMAN, E. & MARGULIS, T. N. (1969). J. Phys. Chem. 73, 1480.
- BENEDETTI, E., CORRADINI, P. & PEDONE, C. (1970). Acta Cryst. B26, 493.
- Воск, С. М. (1968). J. Amer. Chem. Soc. 90, 2748.
- BUSING, W. R. & LEVY, H. A. (1964). Acta Cryst. 17, 142.
- COPPENS, P., LEISEROWITZ, L. & RABINOVICH, D. (1965). Acta Cryst. 18, 1035.
- DUNITZ, J. D. (1949). Acta Cryst. 2, 1.
- DUNITZ, J. D. & SCHOMAKER, V. (1952). J. Chem. Phys. 20, 1703.
- DUNITZ, J. D. & STRICKLER, P. (1968). In *Structural Chemistry and Molecular Biology*. Edited by A. RICH and N. DAVIDSON, p. 595. San Francisco: Freeman.
- GREENBERG, B. & POST, B. (1968). Acta Cryst. B24, 918.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- KARLE, I. L., KARLE, J. & BRITTS, K. (1966). J. Amer. Chem. Soc. 88, 2918.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham; Kynoch Press.
- MARGULIS, T. N. (1965). Acta Cryst. 19, 857.
- MARGULIS, T. N. (1971). J. Amer. Chem. Soc. 93, 2193.
- MARGULIS, T. N. & FISHER, M. (1967). J. Amer. Chem. Soc. 89, 223.
- MEIBOOM, S. & SNYDER, L. C. (1967). J. Amer. Chem. Soc. 89, 1038.
- OWEN, T. B. & HOARD, J. L. (1951). Acta Cryst. 4, 172.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1969). Acta Cryst. B24, 63.
- SCHOMAKER, V., WASER, J., MARSH, R. E. & BERGMAN, G. (1959). Acta Cryst. 12, 600.
- SEIGLER, D. S. (1967). Thesis, Univ. of Oklahoma, Norman, Oklahoma.
- SOLTZBERG, L. & MARGULIS, T. N. (1969). Chem. Commun. p. 1446.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175.